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Abstract

A combined analytical, numerical and experimental study was conducted to investigate the problem of natural

convection underneath a horizontal rectangular hot fin array. This subject has not been explored before. The purpose of

the investigation was to provide useful and reliable heat transfer coefficients. In addition to the experimental and

numerical results, a useful approximate closed form analytical solution is offered. The analytical solution clearly reveals

the dependence of the Nusselt number on the Rayleigh number, the Prandtl number and the fin’s height to spacing

ratio. Optimum analyses were conducted to determine the minimum fin height that provides the necessary cooling

capability of a specified array base area. In this context it is shown that the optimal fin spacing varies within a narrow

range which depends primarily on the array length. Those findings have important industrial application because they

impact both the cost and size of cooling finned surfaces.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

An investigation of the problem of free convection

underneath a hot and isothermal horizontal fin array is

presented. A downward facing fin array is not the pre-

ferred orientation for effective cooling by means of

natural convection. Thus, this problem has been neg-

lected in the past. However, the development of modern

telecommunication equipment changed this fact.

Architectural design requirements give preference spe-

cifically to such hidden cooling devices. The current re-

search effort was undertaken to provide analytical tools

for calculating the cooling capabilities of downward

facing rectangular fin arrays.

An extensive literature survey did not unveil any

work on the subject of free convection underneath a

horizontal fin array. As opposed to that, considerable

literature exists on the problem of free convection

underneath hot isothermal flat strips. The latter, how-

ever, exhibits convective heat transfer characteristics
* Corresponding author. Tel.: +972-3-640-8443; fax: +972-3-

640-7334.

E-mail address: dayan@eng.tau.ac.il (A. Dayan).

0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2004.01.003
that apply to finned cooling surfaces as well. It has been

demonstrated that buoyancy forces induce a flow from

the center of the hot surface toward the edges [1,2].

Furthermore, in a practical sense, the flow near the

surface exhibits some boundary layer characteristics [3].

The ambient airflow rises from below upward and to-

wards the surface center. At a certain distance d from the

surface the airflow reverses its lateral movement direc-

tion and flows towards the surface edges, as indicated in

Fig. 1. The points of flow reversal form a virtual surface

that represents a boundary where the flow lacks any

lateral velocity component. The flow confined between

this boundary and the hot surface moves towards the

surface edges while portraying some boundary layer

characteristics. This layer is thickest at the surface center

and thinnest at the edges. Similarly, a thermal boundary

layer is also formed, as shown in Fig. 1. Both profiles

exhibit self-similar characteristics along most of the strip

width (excluding slight deviations at the strip edges [3]).

Practically all the heat transfer correlations for nat-

ural convection underneath hot flat strips for laminar

flow, see [3] (which contains a large number of refer-

ences), have the form of

Nu
s

L ¼ CRa1=5L ð1Þ
ed.
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Nomenclature

a half the space between fins

Ab array base area

At array total area

c ratio of substituted fin height to boundary

layer thickness, d1=d
C coefficient, Eq. (1)

C1, C2 coefficients, Eq. (12)

fi i ¼ 1 . . . 10, Eqs. (6), (10) and (15)

fii i ¼ 1 . . . 3, Eq. (9)
g gravitational acceleration

hy;x local heat transfer coefficient at the channel

base

hy;z fin surface local heat transfer coefficient
�h average heat transfer coefficient

H fin height

k thermal conductivity

L array half length

L� dimensionless length, L=
ffiffiffiffiffiffiffiffiffiffi
am=g3

p
_M mass discharge rate

NuL average Nusselt number, �hL=k
P pressure

Pr Prandtl number, m=a
Q heat transfer rate

RaL Rayleigh number, gbL3hw=am
t half the fin thickness

T temperature

u specific internal energy
_U specific internal energy flux

vmax maximum velocity within the channel at

location y
v� dimensionless velocity, v=vmax

u, v, w velocity components

x, y, z cartesian coordinate axes

Greek symbols

a thermal diffusivity

b thermal expansion coefficient

C gamma function

d boundary layer depth

dC critical depth at the channel edge

d1 substituted fin height

e emissivity

g dimensionless coordinate, z=d
n dimensionless coordinate, x=a
m kinematic viscosity

h� dimensionless temperature, h=hw
h temperature difference (T � T1)

q density

Subscripts

w wall conditions

1 ambient conditions

ref reference value

Superscript

s flat strip
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Fig. 1. Schematic description of natural convection underneath

a hot horizontal flat strip.
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where Nu
s

L is the averaged Nusselt number, RaL the

Rayleigh number, and C is a coefficient that depends

on the surface geometry and Prandtl number. The rele-

vance of these correlations, for the present study, stems

from the fact that they apply for the limiting cases of

arrays with large or small fin spacing. In this respect,

Aihara et al. [1] investigated experimentally a two-
dimensional airflow underneath a rectangular plate.

Their investigation revealed that it is reasonable to de-

fine a boundary layer zone with characteristic tempera-

ture and velocity profiles that suit well integral method

analyses.

The current work was initiated by conducting an in

depth investigation of the horizontal flat-strip case.

During that research phase, the integral method was

applied to develop a closed form solution [3] for the

Nusselt number. Additionally, it unveiled the reason for

the discrepancy that exists amongst the corresponding

correlations found in the literature. In essence, the dis-

crepancy emanate from the relative importance of edge

effects. The new correlation that was developed for

Pr ¼ 0:7 is

Nu
s

L ¼ ½1þ 0:24 expð�0:0025L�Þ�0:46Ra1=5L ð2Þ

where

L� ¼ Lffiffiffiffiffiffiffiffiffiffi
am=g3

p
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Fig. 2. Schematic description of natural convection underneath

a hot finned surface.
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Fig. 3. Dimensions and coordinate system of a channel. (a)

Rectangular fin; (b) curved fin.
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The dimensionless length L� contains a group of prop-

erties that affect the boundary layer thickness which

increases with the thermal diffusivity a and kinematic

viscosity m, and decreases with the gravitational accel-

eration g. The influence of this dimensionless parameter

is pronounced when the strip width is short and ‘‘edge

effects’’ are no longer negligible.

Similar to the flow near a flat surface, a ‘‘boundary

layer’’ type flow is expected to develop underneath a

finned surface, as shown in Fig. 2. Qualitative visuali-

zation tests, conducted with smoke, and numerical

simulations supported that fact. However, a finned

surface has the added dimensions of the fins geometry.

The shape of the ‘‘boundary layer’’ outer surface is af-

fected by the presence of the fins. A fin array can be

regarded as an array of inverted channels. The

‘‘boundary layer’’ outer surface, excluding the surface

edges neighborhood, can be either entirely outside or

partially outside those channels. The former case, shown

in Fig. 2, is the focus of the current investigation. It

covers all the cases of practical importance where the fin

spacing is not much larger than its optimum (presented

subsequently in this work). For those cases, the

‘‘boundary layer’’ outer surface is laterally fairly flat and

slightly curved longitudinally.

The current work was undertaken with the purpose

of providing reliable heat transfer coefficients of down-

ward facing rectangular fin arrays. The investigation was

conducted experimentally, numerically and analytically.

The numerical simulation was tested experimentally and

then used to extend the scope of the experimental data.

The numerical analyses were conducted over a large

range of Rayleigh numbers and array dimensions. The

analytical phase of the research was aimed towards the

development of a useful closed form expression for Nu
number. In addition, optimization analyses were con-

ducted to find the fin array dimensions that maximize

the cooling capability per unit base area for a given fin

height. It is worth noting that the analytical approach

that was used here and previously [3] can be considered

as a simple and attractive solution method that can be

incorporated for the analyses of even more complex hot

surface geometry.
2. Analytical solution

Consider a horizontal isothermal hot rectangular fin

array. Excluding side effects, it is expected that the

hydrodynamic and thermal conditions within all the fin

array channels would be identical. Therefore it suffices

to model the conditions of a single channel. As seen in

Fig. 3a, the channel is of length 2L, in between two fins

of height H that are 2a apart. The fin thickness 2t is
usually small relative to the channel circumference and

therefore its influence on the average heat transfer

coefficient is insignificant. Therefore, that influence

would not be analyzed specifically. The cooling effect of

the fin-edges exposed area would be accounted for

simply as an added area. As aforementioned, it is as-

sumed that the boundary layer thickness extends beyond

the fin height along most of the channel length. If one

wants to adopt the integral solution method for that

boundary layer, the rectangular fin geometry poses a

serious obstacle. Its fixed height contradicts the simi-

larity characteristics of boundary layer velocity and

temperature profiles. In other words, if the boundary

layer outer surface curves longitudinally and shrinks as

it approaches the cannel edge, the fixed fin height would

distort it. Luckily, the domain where this effect plays a

role is confined to a relatively short section near the

channel edge. Throughout the cannel length, such as

underneath flat surfaces [3], the boundary layer thick-

ness is fairly constant (as observed in the numerical

simulation). Thus the question that arises is what a

difference it could make if the fin geometry is distorted

such that the fin height would be proportional to the

boundary layer thickness. If the boundary layer thick-

ness was constant then that assumption would be fully

accurate. The argument that is introduced here is, in

effect, that a slightly curved fin should have a similar

cooling capability such as a rectangular fin of equal

surface area. The merit of this assumption, that has been

indeed adopted, is twofold, first, it entails a substantial

simplification of the analytical model, and second, it

does not affect much the model accuracy (as seen sub-

sequently).

Based on the aforementioned discussion, the height

of the curved fin d1, shown in Fig. 3b, is considered to be
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directly proportional to the boundary layer thickness d
by a constant factor c (i.e. d1 ¼ cd, c6 1). For the

indicated coordinate system, the continuity, momentum

and energy equations subject to, both, the boundary

layer and the Bousinesq approximations are

ou
ox

þ ov
oy

þ ow
oz

¼ 0 ð3aÞ

op
ox

¼ 0 ð3bÞ

u
ov
ox

þ v
ov
oy

þ w
ov
oz

¼ � 1

q1
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oy
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o2v
ox2
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þ o2v
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oh
ox
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oh
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þ w
oh
oz
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o2h
ox2

�
þ o2h

oz2

�
ð3eÞ

The boundary conditions for a constant wall tempera-

ture are

z ¼ 0; u ¼ v ¼ w ¼ 0; h ¼ hw ð4aÞ

x ¼ �a; 06 z6 d1; u ¼ v ¼ w ¼ 0; h ¼ hw ð4bÞ

x ¼ �a; d1 6 z6 d; u ¼ 0;
ov
ox

¼ 0;
oh
ox

¼ 0 ð4cÞ

z ¼ d; u ¼ v ¼ 0;
ov
oz

¼ 0; h ¼ 0;
oh
oz

¼ 0 ð4dÞ

for fluids with Prandtl numbers close to unity it is rea-

sonable to assume that the momentum and the tem-

perature boundary layers have an identical thickness d.
The set of governing equations can be solved by the

integral solution method based on the assumption that

the velocity and temperature profiles exhibit similarity

characteristics. The existence of similarity profiles was

examined numerically and found to be accurate for the

temperature profiles, excluding at the channel edges. The

velocity profiles along the channel were found self-sim-

ilar in the x-direction and roughly so in the z-direction.
The latter was found to be self-similar in the portion of

the flow that extends from d to d1. Within the channels,

some deviations from similarity were observed, more

in the shape and less in the wall velocity gradients.

However, the existence of similarity in the temperature

profiles is the dominant factor for heat transport cal-

culations. Consequently, it was assumed that the veloc-

ity profile deviations are modest enough to be tolerated

by the integral solution method.

The selected self-similar velocity and temperatures

profiles have the form of

v�ðg; nÞ ¼ v
vmax

ð5aÞ
h�ðg; nÞ ¼ h
hw

ð5bÞ

respectively, where g ¼ z=d, n ¼ x=a; and vmax is the

maximum velocity at any channel cross section (i.e. vmax

is y dependent only).

The substitution of the velocity and temperature

profiles (5) into Eqs. (3a)–(3e) and integration across the

boundary layer cross section area, subject to the

boundary conditions, yields

f1
dðv2maxdÞ

dy
þ f2gbhwd

dd
dy

þ f3
d2c2

a2

�
þ f4

�
mvmax

d
¼ 0

ð6aÞ

f5
dðvmaxdÞ

dy
¼ f6

d2c2

a2

�
þ f7

�
a
d

ð6bÞ

where

f1 ¼
Z 1

�1

Z 1

0

v�2 dgdn f2 ¼ 2

Z 1

�1

Z 1

0

Z 1

g
h� dg0 dgdn

f3 ¼
�2

c2

Z 1

0

ov�

on jn¼1

dg f4 ¼
Z 1

�1

ov�

og jg¼0

dn

f5 ¼
Z 1

�1

Z 1

0

v�h� dgdn f6 ¼
2

c2

Z 1

0

oh�

on jn¼1

dg

f7 ¼ �
Z 1

�1

oh�

og jg¼0

dn

All the coefficients, f1 through f7 are dependent on the

velocity and temperature profiles. The boundary condi-

tions at the channel center and at its edge are

at y ¼ 0 vmax ¼ 0 ð7aÞ

at y ¼ L d ¼ dC ð7bÞ

where dC is the boundary layer thickness for critical flow

conditions at the channel edge.

From all five terms of Eqs. (6a) and (6b), the buoy-

ancy term is the only one that is notably dependent on

the boundary layer shape, or alternatively to the longi-

tudinal derivative of its thickness. The boundary layer

curvature has little effects on all other terms. Based on,

either, our numerical simulation or dimensional analy-

ses, one can find that the boundary layer thickness is

fairly uniform along most of the flow run. Applying

these conclusions significantly simplified the solution of

the equations. This approach was successfully incorpo-

rated in the flat-strip investigation [3].

For a nearly constant boundary layer thickness, the

first order approximation of the energy equation solu-

tion is

vmax ¼
f33ay

d2
ð8Þ

Substituting Eq. (8) for the momentum equation veloc-

ity terms, and retaining the boundary-layer-thickness
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derivative only for the buoyancy term, yields the fol-

lowing first order solution approximation

d ¼ d5C

�
þ 5a2

2f11

ð2f 2
33 þ f22f33PrÞ � ðL2 � y2Þ

gbhw

�1=5
ð9Þ

where

f11 ¼
f2
f1

f22 ¼
f3 H

a

� �2 þ f4
f1

f33 ¼
f6 H

a

� �2 þ f7
f5

The boundary layer thickness at the channel edge, dC,
is calculated for critical flow conditions at that point. As

seen from the solution, the fluid velocity increases as it

approaches the channel edge, where the boundary layer

assumes its minimal thickness. The critical thickness, at

the edge, provides a maximal mass discharge rate for the

local fluid energy [3,4]. Based on these arguments the

critical boundary layer thickness was found to be (see

Appendix A for the derivation details)

dC ¼ 2f8f 2
33a

2L2

f9gbhw

� �1=5

ð10Þ

where

f8 ¼
1

2

Z 1

�1

Z 1
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Z 1
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Z 1

g
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� �
v�

�
þ h�v�g

�
dgdn

It is well known that in open channels the critical depth

occurs at about 2dC upstream the channel edge [5]. It is

thus common to estimate the fluid depth at the channel

edge to be somewhat smaller than the theoretical critical

depth. We therefore assumed that the boundary layer

critical thickness at the strip edges equals 0:9dC, or

d ¼ 2f8f 2
33a

2L20:95

f9gbhw

�

þ 5

2

a2ð2f 2
33 þ f22f33PrÞ � ðL2 � y2Þ

f11gbhw

�1=5

¼ L C1

�
� C2

y
L

� 	2
�1=5

ðRaLPrÞ�1=5 ð11Þ

The coefficients C1 and C2 are

C1 ¼ 2� 0:95
f8f 2

33

f9
þ 5

2

ð2f 2
33 þ f22f33PrÞ

f11

C2 ¼
5

2

ð2f 2
33 þ f22f33PrÞ

f11

ð12Þ

The local heat transfer coefficients, for the temperature

profile (5b), are

hy;x ¼ � k
hw

oh
oz jz¼0

¼ � k
d
oh�

og jg¼0

ð13aÞ
hy;z ¼ þ k
hw

oh
oxjx¼a

¼ þ k
a
oh�

on jn¼1

ð13bÞ

The average heat transfer coefficient, �h, is therefore

�h ¼ 1

At

Z Z
At

hdA

¼ 1

Lðaþ HÞ

Z L

0

Z a

0

hy;x dxdy
�

þ
Z L

0

Z d1

0

hy;z dzdy
�
ð14Þ

Notice that the curved fin area is identical to that of the

rectangular fin. The corresponding averaged Nusselt

number is obtained from the substitution of the

boundary layer thickness, Eq. (11), into Eq. (14) and is

NuL ¼
�hL
k

¼ 1

1þ H
a

� � f7
2
C

�1
5

1 F
1

5
;
1

2
;
3

2
;
C2

C1

� �
ðRaLPrÞ

1
5

�

þ f10
c

H
a

� �
L
a

� ��
ð15Þ

where F ðw; x; y; zÞ is the Gauss hyper-geometric function

defined by

F ðw; x; y; zÞ ¼ CðyÞ
CðwÞCðxÞ

X1
n¼0

Cðwþ nÞCðxþ nÞ
Cðy þ nÞ � z

n

n!
ð16Þ

and

f7 ¼ �
Z 1

�1

oh�

og jg¼0

dn f10 ¼
Z c

0

oh�

on jn¼1

dg

The constant factor c is calculated from the requirement

that the curved fin surface area should be equal to that

of the rectangular fin, hence

H ¼ 1

L

Z L

0

d1 dy ð17Þ

which after integration yields

cC
1
5

1F
�
� 1

5
;
1

2
;
3

2
;
C2

C1

�
¼ H

L

� �
ðRaLPrÞ

1
5 ð18Þ

Since C1 and C2 are functions of c, Eq. (18) is an implicit

solution for c. Once c is obtained, it is substituted in Eq.

(15) for the Nusselt number evaluation. Notice that, the

above derivation is valid for any velocity and tempera-

ture profiles that have the forms of Eqs. (5a) and (5b),

respectively.
3. Experimental apparatus

The test apparatus consisted of an insulated hori-

zontal aluminum fin array that was electrically heated
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on its upper surface, as shown in Fig. 4. Six different fin

arrays were tested, for sensitivity analyses, the dimen-

sions of which are listed in Table 1. The insulation, made

of calcium silicate, was 3 cm thick sideways and 9 cm

upwards. On the sides of the array, the insulation plates

were extended well below the fin boundaries, as shown

in Fig. 4, so as to force a two-dimensional external free

convection flow (i.e. with no sideway velocity compo-

nent). Copper–constantan thermocouples were used for

temperature measurements at various points of the fin

array and insulation. In all the tests, the exposed fin

array surface, of the base and fins, was found to be

isothermal (owing to a small Biot number). To evaluate

the convective heat transfer rate, radiative heat fluxes

and heat losses through the insulation were, both, cal-

culated and deducted from the input power. The radia-

tive heat losses were evaluated based on a known shape

factor and a network formula [6]. The surface emissivi-

ties were 0.87 and 0.95, since two different coatings were

used. The experimental average heat transfer coefficient

was simply obtained from the division of the convective

heat transfer rate by, both, the total surface fin array

area and the surface to ambient temperature difference.

The error of the experimental heat transfer coefficient is

smaller than 10% [7]. The test apparatus reliability was

demonstrated through the successful reproduction of

published experimental data on the heat transport

underneath flat strips.
Table 1

Geometrical dimensions for the investigated cases

Case

1 2 3 4 5 6

H [cm] 1.05 2.15 3.4 3.4 3.4 3.4

2L [cm] 20 20 20 13 26 39

2a [mm] 7 7 7 7 7 7

2t [mm] 2.2 2.2 2.2 2.2 2.2 2.2
4. Numerical solution

A numerical solution was obtained with the Icepak

CFD code [8]. In principle, the code solves the governing

set of elliptic partial differential equations for con-

servation of mass, momentum and energy. The buoy-

ancy forces representation is based on the Boussinesq

approximation. The flow is, therefore, considered as

essentially incompressible. The fluid properties are as-

sumed constant and are evaluated at the average of the

hot surface and the ambient fluid temperatures. The

solution is for conditions of steady state laminar free

convection.

An illustration of the boundaries used for the

numerical simulation is presented in Fig. 5. The channel

is located at the upper surface of the rectangular control

volume. Owing to the comprehensive capability of the

code to conduct conductive and convective heat transfer

calculations, it suffices to require isothermal surface

conditions only at the channel upper base surface. The

temperature distribution within the channel walls is

calculated by the code, and the results indeed confirmed

the expected isothermal conditions. The size of the

control volume was extended horizontally and vertically

up to the point that they ceased to influence the calcu-

lated flow and temperature fields of the boundary layer.

In particular, this applies to the dimensions ‘‘d’’ and ‘‘b’’
shown in the figure. The characteristic dimensions that

were found as adequate are d ¼ 0:4L and b ¼ 2L, which
are not different from those found for the horizontal

strip simulation [3]. Further extension of those dimen-

sions does not entail any perceptible difference in the

calculated heat transfer coefficient. The ambient two-

dimensional circulatory flow enters and leaves the con-

trol volume around the open enclosure sides, which are
2 a   

t   

b   

Fig. 5. Control volume for the numerical simulation of a hot

finned surface.
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2ðaþ tÞ wide. At these open boundaries, according to

the Icepak manual [8], viscosity effects are neglected and

the pressure is assumed to be equal to the ambient

pressure. Likewise, the flow entering the control volume

is assumed to be at the ambient temperature. The other

two control volume surfaces, at x ¼ �ðaþ tÞ, are con-

sidered as surfaces of symmetry.

To solve the problem, the code divides the flow do-

main into control volumes. The numerical scheme inte-

grates the governing equations over each control volume

to construct a set of algebraic equations, after lineari-

zation of the results. The set is then solved iteratively by

the Gauss–Seidel linear equation solver for algebraic

multigrid systems (AMG) until convergence is achieved.

For convergence determination, the dimensionless

residual term of each equation was calculated after each

iteration. Convergence was achieved when the residual

terms of the continuity and momentum equations were

smaller than 10�3, and smaller than 10�7 for the energy

equation. The computation results provided numerical

velocity and temperature profiles from which heat

transfer coefficients were calculated. Those results were

successfully tested against current experimental data.

They also accurately reproduced the velocity and tem-

perature profiles of Aihara et al. [1] for the limiting case

of a flat horizontal strip.
5. Results and discussion

The integration of the analytical solution requires a

selection of adequate velocity and temperature profiles.

Several choices were tested and the most successful was

incorporated. The profiles must satisfy the boundary

conditions. As such, two distinctly different regions exist

in the boundary layer. One resides within the channels

and the other outside the channels. Therefore two sets of

profiles were selected and are

v
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¼
27
4
gð1� gÞ2ð1� n2Þ; 06 g6 c

27
4
gð1� gÞ2; c < g6 1

(
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1� 2
3
m½1� ð1� cÞn�


 �
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1�c

� �2
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ð20Þ

where

n ¼ 1

4
þ 7

4
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�
� 0:5

H
a

�
ð21Þ

m ¼ 1þ 1

2
exp

�
� 0:05

H
a

�
ð22Þ

Substitution of these profiles into the analytical model

and the subsequent integration constitute a lengthy and

quite cumbersome process. Nevertheless, it provides all
the components of the analytical solution, Eq. (15). The

solution, though complex, predicts quite accurately,

both, the experimental results and the numerical simu-

lation. However, exploration of its terms revealed that it

can be substantially simplified by substitution of some of

its complex functions (such as the hyper-geometric

function) by simple form approximations. The substi-

tutions made for Pr ¼ 0:7, yield the following approxi-

mation

f7
2
C

�1
5

1 F
1

5
;
1

2
;
3

2
;
C2

C1

� �
ðRaLPrÞ

1
5 þ f10

c
H
a

� �
L
a

� �

� 0:46 exp

�
� H
2a

�
Ra

1
5
L þ 0:3

H
a

� �
L
a

� ��4
5

Ra
2
5
L ð23Þ

The solution must reduce to that of the horizontal infi-

nite flat strip when the fin height approaches zero.

Furthermore, to make it also compatible with the lim-

iting case of short strips, it is necessary to multiply the

solution by the term in squared parenthesis of Eq. (2).

This term accounts for the influence of the ‘‘edge effects’’

on the heat convection of short flow paths, when they

are of significance. The adoption of this correction and

its introduction into channel correlations turned out to

be warranted. With the substitution of Eq. (23) and the

incorporation of the ‘‘edge effects’’ correction, the

averaged Nusselt number takes the form of

NuL ¼
Nu

s

L

1þ H
a

exp

�"
� H
2a

�
þ 0:65

H
a

� �
L
a

� ��4
5

Ra
1
5
L

#

ð24Þ

where Nu
s

L is the averaged Nusselt number for the hor-

izontal infinite flat strip, presented by Eq. (2). Notice

that this correlation is a simple, self-contained, closed

form solution.

The comparison of the analytical, numerical and

experimental results for six different fin arrays (listed in

Table 1) is presented in Fig. 6. As seen, the numerical

and test data are in an exceptional agreement. Likewise,

the analytical model predicts reasonably well the test

results. Excluding the 13 cm array (6.5 cm flow path

length), the deviations of the predicted heat transfer

coefficients from, either, the numerical or experimental

results are smaller than 5%. The shortest array, repre-

sents an extreme case were the longitudinal flow path is

6.5 cm and the fin height is 3.4 cm. For that case, the

maximum deviation is smaller than 12% and is reached

only at the higher temperatures. It is worth noting that

without the edge effect correction, that deviation would

have been larger. Notice also that at low temperatures,

the deviation vanishes.

As expected, owing to stronger buoyant forces, the

heat transfer coefficient always increases with the array

surface temperature. Inspection of the influence of the

fin height on the averaged heat transfer coefficient
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indicates that it is quite small. As opposed to that, the

influence of the channel length is substantial. To further

demonstrate those sensitivities, the dependence of the

heat transfer coefficient on, both, the fin height and

channel length is plotted in Fig. 7, for two different array

surface temperatures. It is seen that at certain fin heights

the heat transfer coefficient has a minimum. This stems

from the fact that up to a certain height the increase of

the fin heights does not enhance the buoyant force but

increases the drag force, and thus reduces the averaged

heat transfer coefficient. Beyond that height, there is a

mutual compensation between the two effects with a

slightly stronger influence of the buoyant force, since it

is after all the flow driver. Note that the above discus-

sion is for the average heat transfer per unit surface area.

However, any increase of fin height increases the array
surface area and thereby entails a larger heat transfer

rate. The influence of the channel length is obviously one

of increased resistance to the flow at longer channels,

and thus of smaller heat transfer coefficients. Experi-

mental data are also shown in Fig. 7 as well as points

representing the flat-strip heat transfer coefficients, cal-

culated numerically. The agreement between the theo-

retical predictions and all the other data, including

numerical, is excellent.

The fin spacing plays an important role in deter-

mining the array heat transport capability. As seen in

Fig. 8, larger fin spacing in effect reduces drag and

thereby increases the heat transfer coefficient. However,

for specified array base dimensions, enlargement of the

fin spacing reduces the cooling surface area. The

opposing influence of these two effects on the heat
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transfer rate per unit base area is illustrated in Fig. 9

(computed numerically). It is seen that they entail opti-

mal fin spacing. On each curve, the optimum was

marked with a dot. Clearly, the optimal spacing is

independent of the fin height, since the latter does not

affect much the heat transfer coefficient above a certain

height (see Fig. 7). The importance of the fin height is in

the added cooling area that it can provide, as seen in

Fig. 9a.

The influence of the array surface emissivity on the

optimal fin spacing is also negligible, as shown in Fig. 9b

(radiation calculations, as previously mentioned, were
based on [6]). In free convection problems, thermal

radiation can play an important role in the total fin

array cooling capacity. Furthermore, radiation has its

own optimal spacing. However, this optimum is pro-

nounced only when the surface emissivity is small. At

this instance, the relative importance of radiation is

fairly small and therefore is non-influential. When the

radiation becomes strong, owing to large surface emis-

sivity, the fin spacing weakly affects the radiation com-

ponent.

The array surface temperature has a small effect

on the optimal fin spacing, as seen in Fig. 9c. This is
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attributed to the fact that with higher temperature,

buoyancy can still drive an effective convective flow into

the tighter channels.

As depicted in Fig. 9d, the channel length has an

appreciable influence on the optimal fin spacing. A long

channel presents considerable flow resistance and

therefore should be compensated by larger fin spacing.

Another important feature revealed by the figure is that

shorter channels are always preferable over longer ones.

It indicates that the fin must be installed on a rectan-

gular array in parallel to its short side. The most striking

outcome of the above investigation it that the optimal

fin spacing lies in a very narrow range for a wide variety

of array geometries, from which the channel length is the

one of real relevance.
The above discussion on the optimal spacing can

considered as an optimization analysis that reveals what

is the minimum fin height that can provide a specified

cooling capacity for a given base area. The array base

width (that equals the channel length 2L) essentially

determines the optimal fin spacing. Subsequently, the

minimum fin height that provides enough cooling

capacity is determined.
6. Conclusions

A combined analytical, numerical and experimental

investigation of the free convection underneath a hori-

zontal hot fin array was conducted. A useful closed form
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correlation for the Nusselt number was developed for

the first time. Furthermore, by accounting for both heat

conduction and thermal radiation, it was possible to

determine the optimal fin spacing that maximizes the

heat transfer rate per unit of array base area for a given

fin height. The following conclusions were drawn from

that investigation:

• The integral method can be applied successfully to

obtain closed form solutions for geometries where

the existence of similarity profiles is somewhat dubi-

ous.

• The fin geometry can be slightly altered to facilitate

analytical analyses without appreciable loss of accu-

racy.

• The array length, fin spacing, and surface tempera-

ture mostly affect the heat transfer coefficient. The

fin height does not affect much the heat transfer coef-

ficient.

• An optimal fin spacing exists which can be deter-

mined simply from the knowledge of the fin array

length.

Excellent agreement was obtained among the ana-

lytical, numerical and experimental results.
Appendix A

The boundary layer thickness at the channel edge, dC,
is calculated for critical flow conditions at that point.

Over half of the channel width, the conducted energy

transfer into the channel, Q=2, must be convected out of

the channel edge. This energy is calculated by integrat-

ing the total enthalpy across the channel at the edge. The

integration is based on the velocity and temperature

profiles of Eq. (5), subject to a variable air density in the

buoyancy and pressure terms. The pressure is calculated

according to Eq. (3d) for a reference value Pref at a

distance zref below the channel (see Fig. 10). The inte-

gration of the total enthalpy at the channel edge is

therefore
Pref 

zref 

δC 

y=L y=0 
y 

M  

Control Volume 

.

Fig. 10. Boundary layer schematics for the calculation of the

critical depth.
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2
CvmaxðLÞa

þ f0PrefvmaxðLÞdCa� f0q1gzrefdCvmaxðLÞa ðA:1Þ

where u and _U represent the fluid specific internal energy

and its flux at the channel edge, respectively and
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The mass discharge rate at the channel edge is

_M ¼
Z a

�a

Z dC

0

ðqvÞjy¼L dzdx ¼ f0q1vmaxðLÞdCa ðA:2Þ

Combining Eqs. (A.1) and (A.2), to identify _M , yields

_U þ f8 _M3

f 3
0 q

2
1d2Ca

2
þ f9gbhwdC _M

f0
þ pref _M

q1
� gzref _M � Q

2
¼ 0

ðA:3Þ

Equating the derivative of Eq. (A.3) to zero enables the

calculation of the maximum discharge rate _M for an

energy input Q=2. This is done according to

d _M
ddC

¼ 0 ðA:4Þ

Since most of the convected energy Q=2 is in the thermal

component _U , it is assumed that the derivative of their

difference (Q=2� _U ) with respect to dC is negligible. It

implies that conditions of critical flow are dictated by

how the mechanical energy redistributes itself among the

pressure, the kinetic and the potential components at the

point of discharge. With this assumption, the critical

flow was found to be

d3C ¼ 2f8 _M2

f9f 2
0 gbhwq2

1a
2

ðA:5Þ

Substitution of Eq. (A.2) yields

dC ¼ 2f8f 2
33a

2L2

f9gbhw

� �1=5

ðA:6Þ
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